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Abstract
We bosonize (2 + 1)-dimensional fermionic theory using coherent states. The gauge-invariant
subspace of boson–Chern–Simons Hilbert space is mapped to fermionic Hilbert space. This
subspace is then equipped with a coherent state basis. These coherent states are labelled by a
dynamic spinor field. The label manifold could be assigned a physical meaning in terms of
density and spin density. A path-integral representation of the evolution operator in terms of
these physical variables is given. The corresponding classical theory when restricted to LLL is
described by spin fluctuations alone and is found to be the NLSM with Hopf term. The
formalism developed here is suitable to study quantum Hall skyrmions semiclassically and/or
beyond the hydrodynamic limit. The effects of Landau level mixing or the presence of slowly
varying external fields can also be easily incorporated.

1. Introduction

Bosonization provides a dual description for fermionic systems
and exposes them to complementary enquiry. It is not only
applied as a tool to probe these fermionic systems but continues
to be an active topic of research. Bosonization in 1 + 1
dimensions has been thoroughly and exhaustively studied.
Even in 2 + 1 dimensions there are numerous works and it
is implemented in various different approaches [1–4].

In 2 + 1 dimensions the transmutation of statistics can
be induced by the Chern–Simons gauge field [5]. But this
gauge field is not a dynamical field and hence introduces a
redundancy into the description of the fermionic system. In the
Hilbert space that describes both the bosons and the Chern–
Simons gauge field, the gauge-invariant subspace is sufficient
to describe the fermionic system. We provide a coherent
state basis to this subspace and label the coherent states by a
dynamic spinor field.

Coherent states have the advantage of providing a
correspondence between the classical and the quantum
dynamics. It also enables us to implement quantum constraints
as conditions on the classical manifold that labels them. For
example, in quantum Hall systems the typical energy scales
involved make the dynamics predominantly to take place in
the lowest Landau level (LLL). Such quantum conditions can
be implemented easily in a coherent state basis.

Bosonization of (2 + 1)-dimensional quantum Hall
systems when restricted to LLL is known to result in a (1 + 1)-

dimensional bosonic theory [6]. One of the advantages of
that bosonic theory is that tools of low-dimensional theories
aid in furthering insights, while a major disadvantage is
the difficulty in incorporating the effects of Landau level
mixing. Moreover the approach used in [6] is not amenable
to generalize bosonization beyond LLL.

Spinless quantum Hall systems, without any LLL
restriction, have been bosonized using the Chern–Simons
gauge field, and successfully applied to study the fractional
quantum Hall effect [7]: Laughlin ground states, vortex
excitations, etc. Though the approach described in [7] can
easily be extended to bosonize electrons with spin, the resulting
bosonic Hilbert space has unphysical states. Furthermore,
it has difficulty in identifying a correspondence between the
classical solutions and the quantum states.

Systems that exhibit Fermi liquid behaviour have also
been bosonized in higher dimensions within the long-
wavelength limit [8, 9]. The low-energy particle–hole
excitations of such systems are associated with small
deformations of the Fermi surface and furthermore are depicted
by coherent states [9]. Within the same approximation, even
LLL systems have been provided with a bosonic algebra to
describe the fermion bilinear operators like charge and spin
density [10]. The coherent states of these bosons are then made
use of to represent the skyrmionic excitations at filling fraction
ν = 1.

Apart from providing a new bosonization scheme and
a coherent state basis labelled only by dynamic variables,
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one of the motivations of this work is to develop a suitable
formalism for semiclassical investigation of systems with
quantum constraints. In particular, we systematically derive
the effective theory that is used for describing the quantum
Hall skyrmions, namely the nonlinear sigma model (NLSM),
at filling fractions ν = 1/m, where m is any odd integer. What
is the limit when this classical theory becomes exact? What
are the corrections to this NLSM when this limit is not yet
reached? What is the effect of Landau level mixing?

Quantum Hall physics has given rise to an intensely
active area where various complementary approaches are
pursued to perceive its intricacies (see [11] and references
therein). Attaching fluxes, for example, to fermions instead
of bosons [11, 12] has systematically led to effective theories
at Jain filling fractions. In fact, quantum Hall systems exhibit
such a rich variety of excitations, like, for example, various
skyrmions, that it still continues to captivate both theorists and
experimentalists [13, 14]. Nevertheless, we shall not attempt
to mention here the enormous list of aspects and objects this
fascinating subject offers.

The layout of this paper is as follows. In section 2, we
construct a coherent state basis for the Hilbert space of the
bosons and the Chern–Simons gauge fields. We then construct
a representation for the anticommuting electron operators in
terms of the bosonic fields and provide an explicit mapping
between the states and observables of electronic Hilbert space
and the states and operators of the gauge-invariant sector of the
composite boson theory.

In section 3, we describe the physical Hilbert space which
is the gauge-invariant subspace of the composite boson Hilbert
space. The coherent states are projected onto this subspace
and their wavefunctions calculated. The explicit form of the
wavefunctions is made use of in parametrizing the projected
coherent states. The LLL condition is also found to be
equivalent to an analyticity condition on this parameter space.
The matrix elements of the observables between the projected
coherent states are expressed as correlation functions of a field
theory, and evaluated in the hydrodynamic limit. We also
discuss the relation between the charge and the topological
charge densities.

In section 4, we show that the projected coherent states
satisfy the properties of generalized coherent states [15]. The
limit where a classical description is admitted is dealt with in
section 5. We finally conclude in section 6 with a summary,
then apply the formalism to justify the nonlinear sigma
model description of skyrmions in quantum Hall systems, and
comment about other possible applications.

2. Composite boson theory and coherent states

In this section, we bosonize the fermionic system in 2 +
1 dimensions, wherein the electrons are described by the
composite objects composed of bosons and fluxes of the
Chern–Simons field. We first define the Hilbert space of the
composite bosons and construct a coherent state basis for it.
We then give a representation of the electron field operators and
provide an explicit mapping between the states and observables
of the fermionic system and the gauge-invariant states and

operators of the bosonic theory. The procedure of attaching
fluxes to bosons and the construction of electron operators is
quite transparent in terms of these coherent states.

2.1. The composite boson Hilbert space

The bosonic degrees of freedom are described by the spinor-
field operators, ϕ̂σ (x) and ϕ̂†

σ (x), and the Chern–Simons
gauge-field operators, âi(x). Here both the indices σ and i run
over 1 and 2, and x denotes a point in two-dimensional space.
The {ϕ̂} operators act on the Hilbert space HB and satisfy the
canonical commutation relations

[ϕ̂σ (x), ϕ̂†
σ ′(y)] = δσσ ′δ(x − y),

[ϕ̂σ (x), ϕ̂σ ′(y)] = [ϕ̂†
σ (x), ϕ̂

†
σ ′(y)] = 0.

(2.1)

The Chern–Simons gauge field acts on the Hilbert space HCS

and satisfies

[

âi(x), â j(y)
] = κ−1/2εi jδ(x − y), (2.2)

where κ is an arbitrary parameter as yet, but shall be restricted
later while constructing a fermionic representation in this
composite bosonic Hilbert space. It is convenient to write
the Chern–Simons gauge fields in terms of the complex fields,
â(x) and â†(x), where

â(x) :=
√

κ

2
(̂a2(x)+ îa1(x))

â†(x) :=
√

κ

2
(̂a2(x)− îa1(x))

(2.3)

which then satisfy the commutation relations

[

â(x), â†(y)
] = δ(x − y). (2.4)

The Hilbert space of the composite boson theory is now defined
as the direct product of these two bosonic spaces and is denoted
by

HCB = HB ⊗ HCS. (2.5)

The gauge-invariant sector of this space, Hphy ⊂ HCB,
describes the states of the physical theory and is the set of all
states that respect the Chern–Simons Gauss law constraint

̂G(x)|ψ〉phy = 0, (2.6)

where Ĝ(x) is the generator of the gauge transformation and is
given by

̂G(x) = κ∇ ×̂�a(x)− eϕ̂†(x)ϕ̂(x). (2.7)

Henceforth, the gauge-invariant operators, namely the
operators that commute with ̂G(x) and act on Hphy, will also
be referred to as physical observables.
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2.2. Coherent state basis

We now construct the coherent state basis for the composite
boson Hilbert space. Since HCB is the direct product of two
spaces, both of which contain the canonical harmonic oscillator
structure, the most natural construction is to take the product of
the field coherent states of HB and HCS.

Field coherent states are defined by many equivalent
definitions [16], one of which is through the displacement
operators defined as

D(a) := exp

(∫

x
a(x )̂a†(x)− ā(x )̂a(x)

)

, (2.8)

and

U(ϕ) := exp

(∫

x
ϕσ (x)ϕ̂σ (x)

† − ϕσ (x)ϕ̂σ (x)

)

, (2.9)

where a(x) and {ϕσ (x)} are complex fields, and ā(x)
and {ϕ̄σ (x)} denote the corresponding complex conjugates.
These operators are called displacement operators for they
possess the property D(−a)̂a(x)D(a) = â(x) + a(x) and
U(−ϕ)ϕ̂σ (x)U(ϕ) = ϕ̂σ (x)+ ϕσ (x).

The coherent states |a, ϕ〉 are defined by acting the
displacement operators on the vacuum |0〉. Hence they are
parametrized by the gauge field a(x) and by the spinor field
ϕ(x) with components {ϕσ (x)}, and are given as

|a, ϕ〉 := U(ϕ)D(a)|0〉, (2.10)

where
â(x)|0〉 = ϕ̂σ (x)|0〉 = 0. (2.11)

These states can be interpreted as Gaussian wavepackets
peaked around the classical field configuration {a(x), ϕ(x)}.
They satisfy the three standard properties of coherent
states [15], namely:

(1) Resolution of identity:
∫

D[a, ϕ]|a, ϕ〉〈a, ϕ| = I, (2.12)

where the measure D[a, ϕ] = ∏

x(2π i)−3da(x) dā(x)
∏

σ

dϕσ (x) dϕ̄σ (x).
(2) Continuity of overlaps:

〈a1, ϕ1|a2, ϕ2〉 = exp

(

−i
κ

2

∫

x
�a1 × �a2 − κ

4

∫

x
|�a1 − �a2|2

)

× exp

(

1
2

∫

x,σ

(

ϕ̄1σϕ2σ − ϕ1σ ϕ̄2σ − |ϕ1σ − ϕ2σ |2
)

)

,

(2.13)

where, to keep the notation compact, �a = �a(x) and ϕ = ϕ(x),
are used. Here the components of the vector �a ≡ (a1, a2) =√

2/κ(Im(a),Re(a)), are defined as the imaginary and real
part of the complex field a.

(3) Expectation values of observables:

〈a, ϕ| : O( â, â†, ϕ̂, ϕ̂†) : |a, ϕ〉 = O(a, ā, ϕ, ϕ†) 〈a, ϕ|a, ϕ〉.
(2.14)

Note that these coherent states are not gauge-invariant and
transform as

|a, ϕ〉 → ei
∫

̂G(x)
(x) |a, ϕ〉
= ei(κ/2)

∫

x �a(x)×∇
(x) ∣
∣a − ∇
,ϕe−i e


〉

, (2.15)

under gauge transformations.
We now construct a projection operator that projects any

state into the gauge-invariant subspace, Hphy. Consider the
operator

P := 1

VG

∫




exp

(

i
∫

x

(x)̂G(x)

)

(2.16)

where ̂G(x) is the generator of gauge transformations, as given
in equation (2.7), 
(x) is a real-valued smooth function of
compact support and VG = ∫



is the volume of the gauge

group. It is easy to see that this operator has the property
P2 = P . Shifting the integration variable 
 by β in the above
expression for the projection operator P gives

ei
∫

x β(x)
̂G(x)P = P, (2.17)

and then taking the limit β → 0 leads to

̂G(x)P = 0 ⇒ ̂G(x)P|ψ〉 = 0. (2.18)

Hence the operator P projects any state into Hphy.
The above three properties (2.12)–(2.14) and the

projection operator defined in equation (2.16) can be used to
derive the path-integral representation of the gauge-invariant
evolution operator. We obtain this path integral, as detailed in
appendix A, to be

Z =
∫

D[a0(x, t)]D[ai(x, t)]D[ϕ(x, t)]ei
∫

dt d2x L(x,t),

(2.19)
with the standard Lagrangian of a couplet of matter fields
coupled to the Chern–Simons gauge field, given by

L(x, t) = −κ
2
εμνλaμ(x, t)∂νaλ(x, t)+ iϕ†(x, t)ϕ̇(x, t)

+ ea0(x, t)ϕ†(x, t)ϕ(x, t)− H(a(x, t), ϕ(x, t)), (2.20)

where H is the Hamiltonian density. This confirms the
equivalence of our formalism and the standard Lagrangian
formalism. In other words, this Chern–Simons classical theory,
which is described by a pair of conjugate variables and a first-
class constraint, upon quantization would yield the quantum
theory that we proposed here.

2.3. Bosonization

We now construct gauge-invariant anticommuting operators
that create and annihilate flux-carrying bosons. These
operators satisfy the fermionic canonical anticommutation
relations and hence are used for representing the electron
creation and annihilation operators in HCB. With this electron
representation we provide a map from the gauge-invariant
sector of the composite boson Hilbert space, Hphy, onto the
Hilbert space of the electronic system, Hel. The inverse
mapping then gives a representation of the observables of the
electronic system as gauge-invariant operators in HCB.

3
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We define the operator c†
σ (x) as

c†
σ (x) := D(x)ϕ̂†

σ (x)K (x), (2.21)

where, to simplify the notation, D(x) is used for D(αvx ).
Here αvx is the classical configuration of a vortex with a delta
function flux density at the point x , and obeys the relation

κ∇ × �αvx (z) = eδ(z − x). (2.22)

Hence D(x) can be interpreted as an operator that creates
a Gaussian wavepacket peaked around this classical vortex
configuration. When c†(x) acts on a state, it amounts to
creating a bosonic particle at x by ϕ̂†

σ (x), and then attaching to
it a Chern–Simons flux by D(x). The operator K (x) gives the
Aharanov–Bohm phase corresponding to all the other particles
already present in the state. It is defined as

K (x) := exp

(

im
∫

z
θ(x − z)ϕ̂†(z)ϕ̂(z)

)

(2.23)

where m is an odd integer and θ(x) is the angle the vector, x ,
makes with the x axis. Though K (x) is a nonlocal operator the
local observables of the Hel get mapped to local operators of
Hphy.

The annihilation operators cσ (x) are defined as the
Hermitian conjugates of c†

σ (x). Using the commutation
relations given in equations (2.1) and (2.2), it can be verified
that the following canonical anticommutation relations hold
good when κ = e2/2πm:

{cσ (x), c†
σ ′(y)} = δσσ ′δ(x − y),

{cσ (x), cσ ′(y)} = {c†
σ (x), c†

σ ′(y)} = 0.
(2.24)

Hence c†
σ (x) and cσ (x) provide a representation of the electron

creation and annihilation operators in HCB. Since under gauge
transformation

ϕ̂σ (x) → ei e
(x)ϕ̂σ (x) , ϕ̂†
σ (x) → e−i e
(x)ϕ̂†

σ (x)

ai (x) → ai(x)+ ∂i
(x), D(x) → ei e
(x)D(x),
(2.25)

we see that cσ (x) and c†
σ (x) are gauge-invariant.

We are now in a position to map Hphy into Hel. We map
the vacuum state of HCB projected to Hphy to the zero-electron
sector state |0〉el of the electronic Hilbert space:

P|0〉 → |0〉el. (2.26)

Since cσ (x) are gauge-invariant, and hence commute with P ,
it is easy to see that

cσ (x)P|0〉 = 0. (2.27)

The state with N electrons at (x1, x2, . . . xN ) with spins
(σ1, σ2, . . . , σN ), denoted |{xa, σa}N 〉, is then given a
correspondence with

N
∏

a=1

c†
σa
(xa)P|0〉 → |{xa, σa}N 〉. (2.28)

Since the states on the right-hand side of equations (2.26)
and (2.28) form a basis for Hel, these equations specify the
explicit mapping of Hphy into Hel.

It is now easy to identity the operators in Hphy that
correspond to the physical observables. The density and the
spin density operators are

ρ̂(x) = c†
σ (x)cσ (x) = ϕ̂†

σ (x)ϕ̂σ (x), (2.29)

and

̂Sμ(x) = 1
2 c†
σ (x)τ

μ

σσ ′cσ ′(x) = 1
2 ϕ̂

†
σ (x)τ

μ

σσ ′ϕ̂σ (x), (2.30)

respectively, where {τμ} are Pauli matrices. The current
density is given by

̂Ji (x) = 1
2 c†
σ (x) (−i∂i − eAi(x)) cσ (x)+ h.c.

= 1
2 ϕ̂

†
σ (x) (−i∂i − eai(x)− eAi(x)) ϕ̂σ (x)+ h.c.,

(2.31)

where an additional term, −ϕ̂†
σ (x)ϕ̂σ (x)

∫

z α
v
xi (z)̂G(z), has

been dropped out, since its action on physical states is zero.
Similarly, the kinetic energy density is given by

̂T (x) = 1

2m
ϕ̂†
σ (x) (−i∂i − eai(x)− eAi(x))

2 ϕ̂σ (x). (2.32)

Note that cσ and c†
σ are composite operators and hence

ill-defined unless they are renormalized. In fact, this inverse
map takes the operators of Hel to the bare operators of Hphy

which need to be renormalized. The correspondence between
the states of Hel and Hphy though remains unaffected by the
field renormalization of cσ and c†

σ .
It should be remarked that a particularly interesting

scheme was adapted by Lüscher to bosonize a fermionic field
coupled to the Chern–Simons gauge field [1]. The construction
employed in [1] has similar elements as our construction here.
One of the differences being, there the quantum theory has
{ai} fields and their conjugate momenta as the fundamental
fields, while here {ai} fields form a conjugate pair. Another
difference, and a novel angle, to our construction comes from
employing coherent states to bosonize. This scheme has an
added advantage, apart from enabling the fermionic theory
to subjugate to semiclassical methods, of implementing the
quantum constraints as conditions on the classical manifold
that label the coherent states.

3. Physical Hilbert space

In this section, we study the properties of the coherent states
when projected into Hphy. These projected states span the
physical Hilbert space. We compute their wavefunctions and
parametrize them by a single complex spinor field Wσ (x).
The LLL condition is found to be equivalent to an analyticity
condition on the parameters. The expectation values of
observables are evaluated in the hydrodynamic limit. We
also discuss the relation between the charge density and the
topological charge density.

4



J. Phys.: Condens. Matter 20 (2008) 275237 S B Dutta and R Shankar

3.1. Projected coherent states: wavefunctions

The coherent states of HCB form a basis, and hence these states
when projected to Hphy will span the physical Hilbert space.
We shall see in the next section that they also form a coherent
state basis of Hphy. We now evaluate the wavefunctions of
these projected coherent states:

|a, ϕ〉p := P|a, ϕ〉. (3.1)

The coherent states are not eigenstates of the number operator.
This property is unaffected by the P operation and hence
the projected states also have a non-zero overlap with states
containing any number of particles. The wavefunction in the
N-particle sector is obtained by taking the overlap with the
position basis states that are given in equation (2.28):

ψN ({xa, σa}) = 〈{xa, σa}N |a, ϕ〉p. (3.2)

The explicit form of these wavefunctions, as detailed in
appendix B, is given as

ψN ({xa, σa}) = C

(

N
∏

a=1

ϕσa (xa)e
e(
T(xa)−˜
T(xa)−i
L(xa))

)

× ψL({xa}), (3.3)

where C = C[a, ϕ] (as given in appendix B) is independent
of the coordinates {xa, σa}, whose amplitude depends on a and
whose modulus depends both on ϕ†ϕ and 
T. The gauge field
a is decomposed into transverse and longitudinal components:

ai(x) = εi j∂ j
T(x)+ ∂i
L(x), (3.4)

and ψL({xa}) denotes the Laughlin wavefunction:

ψL({xa}) =
∏

a>b

(za − zb)
m exp

(

− 1

4l2
B

∑

a

|xa|2
)

. (3.5)

The function e˜
T(x) := −|x |2/4l2
B , is just the Gaussian part of

the Laughlin wavefunction and lB denotes the magnetic length.
Note that if we choose ϕσ (x) to be a constant and
T(x) =

˜
T(x), or in other words a uniform flux ∇ × �a = (|e|/e)B ,
then the wavefunction reduces to the Laughlin wavefunction
with density ρ = 1/2πml2

B . Hence the coherent wavepacket,
peaked around a constant ϕ and around a uniform flux equal to
the external magnetic flux, when projected to Hphy corresponds
to the Laughlin state.

The evaluation of these wavefunctions also elucidates an
interesting property of the projection operator, as shown in
appendix C, namely it provides a correspondence between the
coherent states and vertex operators of a 2D bosonic theory
with a background charge. This connection between the states
of quantum Hall systems and the vertex operators has been well
investigated by many authors [17–19].

3.2. Parametrization and LLL condition

Apart from an overall factor that only affects the norm, the
wavefunction in equation (3.3) depends on the parameters a
and ϕ through a spinor field Wσ (x) defined as

Wσ (x) := ϕσ (x) exp(e(
T(x)− ˜
T(x)− i
L(x))). (3.6)

Under gauge transformations


T(x) → 
T(x)


L(x) → 
L(x)+
(x)

ϕσ (x) → ϕσ (x)e
i e
(x),

(3.7)

Wσ (x) remains invariant and (as it should be) so does the
wavefunction. From the above transformation, it is easy to see
that the fields a and ϕ together have six real field components.
The gauge invariance of the wavefunctions reduces this number
by one. There is another local invariance of W , when


T(x) → 
T(x)+ χ(x)


L(x) → 
L(x)

ϕσ (x) → ϕσ (x)e
−eχ(x).

(3.8)

Under this transformation only the norm of the state changes
and so the physical state remains the same. Clearly
this transformation is not unitarily implemented in HCB;
nonetheless it reduces the number of independent real fields
that parametrize the states to four, namely the components
of the spinor field W . Thus we can define the normalized
projected coherent states that are parametrized by W as

|W 〉 = 1√
N

|α, ϕ〉p, (3.9)

where the norm N = p〈α, ϕ|α, ϕ〉p.
From equations (3.3) and (3.6), we see that the these

wavefunctions belong to LLL if W is analytic:

∂z̄ Wσ (x) = 0. (3.10)

Thus the LLL condition is easily implemented in this
formalism as it is equivalent to an analyticity condition on the
labelling parameter W of the projected coherent states. These
projected coherent state wavefunctions when restricted to LLL
have the same form as considered by Ezawa [20].

3.3. Observables

We now compute the expectation values of gauge-invariant
operators ̂O in the projected coherent states, denoted by

O(W ) = 〈W |̂O|W 〉. (3.11)

In fact, these diagonal elements are sufficient to specify the
operator since the coherent states form an over-complete basis.

The norm of the projected state and the expectation
values of observables in this state can be written as the
partition function and correlation functions of a field theory,
respectively. Here this correspondence is obtained by making,
in each N-particle sector, the transformation

{xi} → ρ̃(x) =
N

∑

i=1

δ(x − xi), (3.12)

and functions F({xi}) → F(ρ̃), where

1

N !
N

∏

i=1

∫

dxi F({xi}) =
∫

D[ρ̃]J [ρ̃]F (ρ̃) , (3.13)

and J [ρ̃] is the Jacobian of the transformation.

5
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Thus the norm of the state |a, ϕ〉p becomes

N [W,
T] =
∑

N

1

N !
N

∏

a=1

∫

xa

∑

σa

|ψN ({xa, σa})|2

= |C|2Z[W †W ], (3.14)

where the partition function, for any given function �(x), is

Z[�] =
∫

D[ρ̃] exp (−S(ρ̃;�)) , (3.15)

with an action

S(ρ̃;�) = − ln J [ρ̃] −
∫

x
ρ̃(x)(ln�(x)

+ 2e˜
T(x)+ 2πm∇−2ρ̃(x)). (3.16)

Expectation values of the operators can now be obtained
by following similar calculational steps as taken in evaluating
the norm. We now write down density, spin density, current
density and kinetic energy density as correlation functions of
this field theory.

In the N-particle sector the action of density operator ρ̂(x)
on the wavefunction has the simple form,

∑N
i=1 δ(x − x̂i)ψN =

ρ̃(x)ψN , and hence we get

ρ(x) := 〈W |ρ̂(x)|W 〉 = 〈ρ̃(x)〉S (3.17)

where 〈· · ·〉S denotes

〈· · ·〉S := 1

Z[W †W ]
∫

D[ρ̃] · · · e−S(ρ̃;W † W ). (3.18)

Similarly, for the spin density operator ̂Sμ(x) in the N-
particle sector, we get
∫

{xa ,σa}
ψN

N
∑

i=1

δ(x − x̂i)
τ
μ
a

2
ψN

= 1

2

W †(x)τμW (x)

W †(x)W (x)

∫

{xa ,σa}
ρ̃(x) |ψN |2 , (3.19)

and hence

Sμ(x) := 〈W |̂Sμ(x)|W 〉 = 1
2ρ(x)Z

†(x)τμZ(x), (3.20)

where the normalized spinor

Zσ (x) := Wσ (x)
√

W †(x)W (x)
. (3.21)

The current density is calculated to be

Ji(x) := 〈W |̂Ji (x)|W 〉
= ρ(x)

(

L3
i (x)− eAi(x)

)

+ m

〈

ρ̃(x)∂xi

∫

y
θ(x − y)ρ̃(y)

〉

S
, (3.22)

where L3
i := 1

2i(Z
†∂i Z − h.c).

The kinetic energy density in the N-particle sector is given
by
∫

{xa ,σa}

N
∑

i=1

|DiψN |2

= ωc
∂z W †(x)∂z̄W (x)

W †(x)W (x)

∫

{xa ,σa}
ρ̃(x) |ψN |2 , (3.23)

where ωc is the cyclotron frequency, z = (x1 + ix2)/
√

2lB and
Di = ∂z̄i + zi/2, and hence we get

T (x) := 〈W |̂T (x)|W 〉 = ωcρ(x)
∂zW †(x)∂z̄ W (x)

W †(x)W (x)
. (3.24)

Note that the kinetic energy density is zero when W is analytic.
From equations (3.17) and (3.20), we see that the density

is a function of only W †W while the spin density is determined
by Z for a given density. Thus W (x) can be provided with a
physical meaning in terms of charge and spin densities.

3.3.1. Hydrodynamic limit. Evaluation of the correlation
functions in the above nonlinear field theory is difficult, and
hence we shall use the saddle-point approximation. In most
calculations we shall further use the limit when Wσ (x) varies
slowly over the magnetic length scale. Since Wσ (x) is related
to density, as we shall see this is also the limit of small density
fluctuations, and hence refer to it as the hydrodynamic limit.

In the hydrodynamic limit, the norm of the Laughlin
wavefunctions is interpreted in terms of a classical 2D plasma
problem. The same interpretation can be given here to the
projected coherent state wavefunctions too, except that in
this case the plasma density is coupled to an ‘external field’
ln(W †W ).

In the large N limit, the Jacobian of the transformation is
the entropy factor

J [ρ̃] = exp

(∫

x
(ρ̃(x)− ρ̃(x) ln ρ̃(x))

)

. (3.25)

Then the saddle-point equation is given by

ρcl(x) = ρ̄ − 1

4πm
∇2 ln(W †(x)W (x))

+ 1

4πm
∇2 lnρcl(x), (3.26)

where the mean density ρ̄ = (2πml2
B)

−1, and the action at the
saddle-point simplifies to

Scl(ρcl) =
∫

x

(−ρcl(x)+ 2πmρcl(x)∇−2ρcl(x)
)

, (3.27)

and, upon neglecting the non-Gaussian fluctuations, the
correlation functions reduce to

〈ρ̃(x)〉S = ρcl(x), (3.28)

〈ρ̃(x)ρ̃(y)〉S = ρcl(x)ρcl(x)+ G(x, y), (3.29)

where [−4πm∇−2 + ρ−1
cl (x)]G(x, y) = δ(x − y). Further

assuming the density fluctuations to vary slowly gives the
hydrodynamic results:

ρ(x)− ρ̄ ≈ −1

4πm
∇2 ln(W †(x)W (x)), (3.30)

Ji (x) ≈ ρ(x)[L3
i (x)− e(Ai(x)− αi (x))], (3.31)

where κ∇ × �α(x) := eρ(x).
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3.4. Charge and topological charge densities

We shall now find the relation between charge and topological
charge when restricted to LLL. The topological charge density
is defined as

q(x) := 1

8π
εi j n̂(x) · ∂i n̂(x)× ∂ j n̂(x), (3.32)

where n̂(x) is the local direction of spin polarization, �s(x) =
1
2ρ(x)n̂(x). In terms of Z , it is given by

q(x) = 1

2π i
εi j∂i Z †(x)∂ j Z(x). (3.33)

As can be seen from equations (3.26) and (3.33), there is no a
priori relation between the topological charge density and the
electrical charge density independent of the state. This is also
reflected in the fact that W †W and Z are independent variables.
However, if the LLL condition is imposed then the analyticity
of Wσ relates the modulus and the phase of each component,
and thus spin and charge get entangled. Using the analyticity
condition, ∂i Wσ (x) = −iεi j∂ j W (x), in equation (3.26) we get
the relation,

ρ(x) = ρ̄ − 1

m
q(x)+ 1

4πm
∇2 lnρ(x). (3.34)

In the hydrodynamic limit this relation reduces to

ρ(x)− ρ̄ = − 1

m
q(x). (3.35)

Thus the topological charge density is proportional to the
electrical charge density if and only if the LLL condition is
satisfied. This relation will therefore not be true in the presence
of Landau level mixing. The above relation (3.35) is known to
hold for large-size quantum Hall skyrmions [13, 21].

When the densities are proportional, the total excess
charge Q will, of course, be proportional to the total
topological charge Qtop. However, the total charges could
be proportional without the densities being so. We will now
investigate this possibility. Integrating equation (3.30) over all
space gives

Q :=
∫

x
(ρ(x)− ρ̄) = 1

4πm

∮

dx i εi j∂ j ln(W †(x)W (x)),

(3.36)
where the contour is at infinity. If W is analytic at infinity, then
the above equation becomes

Q = − 1

2πm

∮

dx i 1

2i
(Z †(x)∂i Z(x)− ∂i Z †(x)Z(x))

= − 1

m
Qtop. (3.37)

Thus if there is no Landau level mixing in the ground state, the
total charge is always proportional to the topological charge.
Note that Z and hence q(x) are well defined only if ρ(x) is
non-zero everywhere. So these results are true only in such
cases and will not hold for polarized vortices [7], where ρ(x)
vanishes at some point.

4. Coherent projected coherent states

We have seen that the projected coherent states could be
labelled by a spinor field W . The computation of the
expectation values of observables in terms of W , in turn,
allowed us to further label these states by the physical
observables, the density ρ(x) and the normalized spinor
Zσ (x). In this section, we will show that these states
also satisfy the generalized coherent state properties [15] in
Hphy, namely the resolution of identity and continuity of
overlaps. This implies that the original electronic theory can
be expressed with no redundancy in terms of bosonic field
operators corresponding to ρ(x) and Zσ (x).

4.1. Resolution of identity

The resolution of identity in Hphy is obtained by the left and
right action of the projection operator P on equation (2.12)
and identifying P with the identity operator of Hphy. Thus we
get

∫

D[a, ϕ]|a, ϕ〉pp〈a, ϕ| = I, (4.1)

and hence the projected coherent states form a basis for the
physical Hilbert space. The left-hand side of the above
equality, using equation (3.9) and making the change of
variables

ai(x), ϕσ (x) → 
L(x),
T(x),Wσ (x), (4.2)

becomes
∫

a,ϕ
|a, ϕ〉p p〈a, ϕ|

=
∫

D[
T,
L,W ] J [
T] N [W,
T]|W 〉〈W |, (4.3)

where the factor J [
T] is the Jacobian due to the change
of variables ϕ → W . Now integrating over 
T and 
L

gives the resolution of identity, in terms of the gauge-invariant
parameters W :

∫

D[W ]G[W ] |W 〉 〈W | = I, (4.4)

where the measure consists of

D[W ] =
∏

x,σ

dWσ (x) dW̄σ (x)

2π i
, (4.5)

and

G[W ] := Z[W †W ]
∫

D[
T,
L]J [
T] |C[W,
T]|2 ,
(4.6)

which in the hydrodynamic limit, as briefed in appendix D,
reduces to

G[W ] ≈ c1

∏

x

1

[W †(x)W (x)]2
, (4.7)

where c1 is a constant.
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In terms of density and spin variables the resolution
of identity is obtained by the transformation Wσ (x) →
{ρ(x), Zσ (x)}:

∫

D[ρ, Z ] |ρ, Z〉 〈ρ, Z | = I (4.8)

where the measure now becomes

D[ρ, Z ] = c′
1

∏

x

dρ(x) sin2 θ(x) sinφ(x) dθ(x) dφ(x)

× dψ(x), (4.9)

when Z is parametrized as

Z = e(i/2)ψ
(

cos θ2 e(i/2)φ

sin θ
2 e(i/2)φ

)

. (4.10)

4.2. Overlaps

The overlap of the projected coherent states, |a1, ϕ1〉p and
|a2, ϕ2〉p, can be written as the partition function with an
‘external field’ ln W †

1 W2:

p〈a1, ϕ1|a2, ϕ2〉p

=
∑

N

1

N !
N

∏

a=1

∫

xa ,σa

ψN ({xa, σa}; 1)ψN ({xa, σa}; 2)

= C[a1, ϕ1]C[a2, ϕ2]Z[W †
1 W2]. (4.11)

Hence, the overlap of their normalized states, |W1〉 and |W2〉,
is given by

〈W1|W2〉 = Z[W †
1 W2]

√

Z[W †
1 W1]Z[W †

2 W2]
(4.12)

and, in the hydrodynamic limit, reduces to

〈W1|W2〉 ≈ exp
(− (

Scl(ρ12)− 1
2Scl(ρ1)− 1

2Scl(ρ2)
))

,

(4.13)
where Scl are the saddle-point actions, as given in
equation (3.27), with the densities

ρa(x) = ρ − 1

4πm
∇2 ln W †

a Wa,

ρ12(x) = ρ − 1

4πm
∇2 ln W †

1 W2

= ρ1 + ρ2

2
− 1

4πm
∇2 ln Z †

1 Z2,

(4.14)

for a = 1 and 2. Using the above expressions we get the
overlap in terms of physical observables:

〈W1|W2〉 = exp

(∫

x

(

mπ

2
(ρ1 − ρ2)∇2(ρ1 − ρ2)

+ ρ1 + ρ2

2
ln Z †

1 Z2 − 1

8πm
ln Z †

1 Z2∇2 ln Z †
1 Z2

))

.

(4.15)

In terms of spin polarizations, Z †
1 Z2 = ((1 + n̂1 ·

n̂2)/2)1/2 exp(i�(n̂1, n̂2)/2), where �(n̂1, n̂2) is the solid
angle subtended by the geodesic triangle with n̂1, n̂2 and some
third point on the unit sphere as vertices. Note that the overlap
smoothly goes to 1 as {ρ1, Z1} → {ρ2, Z2}.

The overlap of the neighbouring states |W 〉 and |W +
ε∂t W 〉 can be evaluated to O(ε) by using the identity

Z[�+ δ�] = Z[�]
(

1 +
∫

x
〈ρ̃(x)〉S

δ�(x)

�(x)
+ O

(

δ�2
)

)

,

(4.16)
in equation (4.12), and we get

〈W + ε∂t W |W 〉 = 1 − iε
∫

x
ρ(x)L3

t (x)+ O(ε2) (4.17)

where L3
μ := (Z †∂μZ − h.c)/2i for μ = t , 1 and 2.

If we now impose the LLL condition, and hence use
equation (3.35), the theory can then be expressed in terms of
spin fluctuations alone. Note that in terms of L3

i the topological
charge density q(x) = (2π)−1εi j∂i L3

j(x). The expression for
the overlap in equation (4.17) then becomes

〈W + ε∂t W |W 〉 = 1 − iερ
∫

x
L3

t (x)

+ iε
1

4πm

∫

x
εμνλL3

μ(x)∂νL3
λ(x). (4.18)

The second term on the right-hand side of the above equation
is the solid angle term, while the last term is the Hopf term.

5. Classical limit

The path-integral representation in terms of the physical
variables follows from the resolution of the identity (4.8)
and (4.9), and the overlaps (4.17) and (4.18). Thus we have
a classical theory defined on the manifold parametrized by
{ρ, Z} with the symplectic structure provided by the overlap
of the neighbouring states (4.17). This theory when restricted
to the lowest Landau level becomes, from equation (4.18), a
nonlinear sigma model (NLSM) with a Hopf term in the action.

We shall now show that for a large skyrmionic
configuration the theory becomes classical. Consider the set of
states corresponding to configurations characterized by a single
size parameter, λ. We parametrize them as

ρλ(x) = ρ̄ + 1

λ2
�ρ

( x

λ

)

,

Zλ(x) = Z
( x

λ

)

.

(5.1)

Substituting ρλ1 (x), Zλ1σ (x) and ρλ2 (x), Zλ2σ (x) in equa-
tion (4.15) and changing the variable x → λx we get to the
leading order in λ

〈W1|W2〉 = exp

(

1

2
λ2ρ

∫

x
ln

(

1 + n̂1 · n̂2

2

)

+ i�(n̂1, n̂2)

)

(5.2)
and thus, for W1 �= W2

lim
λ→∞〈W1|W2〉 → 0. (5.3)

The coherent states thus become orthogonal when λ → ∞
and the off-diagonal matrix elements of the observables in this
basis vanish. Since equation (5.2) is independent of ρ, the
same relation holds even when restricted to LLL. Hence the set
of states corresponding to a system of skyrmions will behave
classically in the limit of the skyrmion sizes tending to infinity.
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6. Conclusion: application to quantum Hall
skyrmions

In this section, we summarize and apply the above formalism
to some aspects of LLL quantum Hall systems.

In this work, we have developed a bosonization scheme
using field coherent states. We started with the composite
boson Hilbert space HCB with a coherent state basis. The
physical subspace of this Hilbert space Hphy is then mapped to
the electronic Hilbert space Hel. The coherent states projected
onto the physical subspace are shown to carry coherent state
properties, form a basis for Hphy and could be parametrized by
a spinor field W (x).

The matrix elements of the operators in this basis are
expressed as the correlation functions of a field theory, which
are then evaluated in the hydrodynamic limit. The LLL
condition is found to be equivalent to the condition that Wσ (x)
are analytic functions. When restricted to LLL we show that
the charge and topological charge get tied up. We also showed
that the condition for the total charge density to be proportional
to the topological charge is weaker. It only requires W (x) to be
analytic at infinity; in other words, that the ground state does
not have Landau level mixing.

We also interpret W in terms of density and spin density.
A path-integral representation of the evolution operator in
terms of the physical variables is obtained. The set of states
corresponding to classical configurations, characterized by a
length scale λ, become orthogonal in the limit of λ → ∞.
This implies that the corresponding classical theory becomes
exact in this limit.

This formalism is particularly suitable for semiclassical
study of (2 + 1)-dimensional electronic systems with quantum
constraints, like LLL restriction. First we can easily find the
semiclassical ground state of quantum Hall systems. In the
classical limit, the expectation value of the Hamiltonian in an
arbitrary state, |ψ〉 = ∑

W AW |W 〉, becomes 〈ψ|H |ψ〉 →
∑

W |AW |2〈W |H |W 〉 � 〈Wm|H |Wm〉, where Wm is the
configuration corresponding to the minimum expectation value
of energy. A constant W leads to the minimum energy with
ρ = ρ. Hence we find that the semiclassical ground state,
whether or not the system is restricted to LLL, is the Laughlin
state at filling fractions ν = 1/m.

Quantum Hall systems support spin-textured quasipar-
ticle excitations called skyrmions, which have been ex-
tensively studied both experimentally [22–26] and theoreti-
cally [27, 13, 21]. These quasihole (particle) excitations are as-
sumed to be described by the classical solutions of NLSM. The
electrical charge density is assumed to be equal to the topologi-
cal charge density: ρ−ρ = −q/m. Near ν = 1, the NLSM en-
ergy functional and the relation between the topological charge
density and electrical charge density has been derived by many
in the LLL, long-wavelength approximation [13, 28, 29]. The
question, about the regime of validity of this model and the
limit when the classical approximation is exact, was also nu-
merically addressed previously [30] and the energetics of large
scale skyrmions suggest that the classical approximation may
be exact in the long-wavelength limit.

In our formalism, starting from the microscopic theory
we could derive NLSM with the Hopf term as the phase

space of skyrmions for ν = 1/m. We could also answer
analytically the following questions. When is the topological
charge proportional to the electric charge? When are the
corresponding densities proportional to each other? What is
the limit in which the classical approximation is exact? How
can the LLL condition be imposed in the classical theory?

The large-size skyrmions have the property that the
charge density is proportional to topological charge density.
Hence the projected coherent states |W 〉, which have this
property, are good candidates to describe the skyrmionic
excitations. By adding the corrections to this relation,
namely equation (3.34), we can also describe small skyrmions
classically. Further a semiclassical description can be provided
with the corresponding coherent states. The classical limit
suggests that NLSM is an exact description when the size of
the skyrmions tends to infinity.

This formalism has the advantage of easily incorporating
the effects of Landau level mixing. This is because the LLL
constraint has been imposed only after obtaining the bosonic
theory for a generic (2 + 1)-dimensional fermionic system.
We saw that the relation between the topological charge and
the electric charge, unlike that of their corresponding densities,
remains unaffected by Landau level mixing if only the ground
state is restricted to LLL. Finally, it may also be suitable to
study the system in a slowly varying external potential.
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Appendix A. The path-integral representation

In this appendix, we derive the path-integral representation
of the partition function by the usual procedure of splitting
the time interval t into N segments of length ε. At
each intermediate step inserting equation (4.1), namely the
resolution of identity of Hphy, and then taking the limit, ε → 0,
N → ∞ keeping t = εN fixed, gives

Z = Tr e−iH t = Tr[e−iεH ]N

=
∫

D[a, ϕ]
N

∏

n=0

〈an+1, ϕn+1|Pe−iεH P|an, ϕn〉, (A.1)

where the measure D[a, ϕ] = ∏

n D[an, ϕn], and (aN+1, ϕN+1)

= (a0, ϕ0). This measure is also gauge-invariant, while under
a gauge transformation

|a, ϕ〉〈a, ϕ| → |a − ∇β, ϕe−ieβ〉〈a − ∇β, ϕe−ieβ |, (A.2)

where β(x) is an arbitrary function. Hence in the above
expression (A.1) we replace an and ϕn by an − ∇βn and
ϕn exp(−ieβn), respectively, for all n. Since the gauge-
invariant Hamiltonian operator H commutes with P and P2 =
P , we make the projection operator act only on the kets and not
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on the bras, for all n. These steps result in

Z =
∫

D[a, ϕ,
]
N

∏

n=0

ei(κ/2)
∫

x �an(x)×∇
n(x)

× 〈an+1 − ∇βn+1, ϕn+1e−i eβn+1 |e−iεH |an − ∇
n

− ∇βn, ϕne−i e(
n+βn)〉 (A.3)

where D[a, ϕ,
] = D[a, ϕ] ∏

n(V
)
−1

∫


n
. Now choose the

function βn+1(x) = 
n+1(x)+βn(x) and expand the functions
an+1 = an + εȧn, 
n+1 = 
n + ε
̇n and ϕn+1 = ϕn + εϕ̇n, to
O(ε). Then the above expression to O(ε) becomes

Z =
∫

D[a, ϕ,
]
N

∏

n=0

ei(κ/2)
∫

x �an(x)×∇
n(x)

× 〈a′
n + εδa′

n, ϕ
′
n + εδϕ′

n|a′
n, ϕ

′
n〉

×
(

1 − iε
〈a′

n, ϕ
′
n|H |a′

n, ϕ
′
n〉

〈a′
n, ϕ

′
n|a′

n, ϕ
′
n〉

)

, (A.4)

where a′
n = an − ∇
n − ∇βn , ϕ′

n = ϕn exp(−ie(
n + βn)),
δa′

n = ȧn−∇
̇n and δϕ′
n = (ϕ̇n−ieϕn
̇n) exp(−ie(βn+
n)).

The first two terms in the above integrand, to O(ε), simplify to

ei(κ/2)
∫

x �an(x)×∇
n(x)〈a′
n + εδa′

n, ϕ
′
n + εδϕ′

n|a′
n, ϕ

′
n〉

= 1 + iε
∫

x

(

−κ
2
εμνλaμn ∂

νaλn + ea0nϕ
†
nϕn

− i

2
(ϕ̇†

nϕn − ϕ†
n ϕ̇n)

)

, (A.5)

where the indices μ, ν, λ run over 1, 2 and 3, 
̇n is given a
new notation a0n, and the x dependence of aμn , ϕn and ϕ†

n is not
explicitly displayed. The matrix elements in the last term of the
integrand H (a′

n, ϕ
′
n) = H (an, ϕn), since H is gauge-invariant.

Now substituting equation (A.5) in equation (A.4) and taking
the limit ε → 0 finally results in the familiar Chern–Simons
path integral, as given in equation (2.19).

Appendix B. The wavefunctions

In this appendix, we evaluate the projected coherent state
wavefunctions. The action of projection operator P and of
the electron operator cσa (xa) on the coherent states is easily
obtainable and is given by

P|a, ϕ〉 = 1

VG

∫




ei(κ/2)
∫

x �a(x)×∇
(x) ∣
∣a − ∂
, ϕe−i e


〉

,

(B.1)
and

cσa(xa)|a, ϕ〉 = ϕσa (xa) ei(κ/2)
∫

x �a(x)×�avxa (x)
∣

∣a − avxa
, ϕeimθxa

〉

,

(B.2)
respectively. Here ϕ exp(imθxa ) denotes the configuration
ϕ(x) exp(imθ(xa−x)) and ∂
 is the complex variable notation
of ∇
. Using the above expressions we get

N
∏

a=1

cσa (xa)P|a, ϕ〉

= 1

VG

∫




ei(κ/2)
∫

x �a×∇

N

∏

a=1

ϕσa (xa)e
−i e
(xa )

a−1
∏

b=1

eimθ(xa−xb )

× ei(κ/2)
∫

x (�a−∇
)× �Av ∣

∣a − ∂
− Av, ϕe−i e(
+�)〉 , (B.3)

and, for notational convenience, Av = ∑

a avxa
and � =

∑

a θa, are used, and the x dependence in the integrals is not
shown explicitly. In obtaining the above expression, further we
have dropped the

∫

x �avxa
× �avxb

terms, for we shall choose the
vectors �avxa

such that their longitudinal components vanish. We
also write �a(x) as

ai(x) = εi j∂ j
T(x)+ ∂i
L(x), (B.4)

and often denote this decomposition by �a(x) = �aT(x)+�aL(x).
Now making the change of variable, 
 → 
 + 
L, in
equation (B.3) and taking the overlap with the vacuum state
gives

ψN ({xa, σa}) = 1

VG
ei(κ/2)

∫

x �aT×�aL

N
∏

a=1

ϕσa (xa)e
−i e
L(xa)

×
a−1
∏

b=1

eimθ(xa−xb )

∫




e(i/2)
∫

x 
(κ∇×�a−e
∑

a δ(x−xa ))

× 〈0|aT − ∂
− Av, ϕ〉 . (B.5)
Here we have made use of the relation κ

∫

x ∇
 × �avxa
=

−e
(xa) and the identities
∫ �uT × �vT = ∫ �uL × �vL = ∫ �uT · �vL,

which hold for the arbitrary vectors �u and �v. Note that the
wavefunction vanishes unless the total flux equals the total
number of particles, for the zero momentum mode of the 

integral gives the constraint

κ

∫

x
∇ × �a(x) = eN. (B.6)

The last term in equation (B.5) is explicitly given by
〈0|aT − ∂
− Av, ϕ〉

= e−(1/2) ∫x ϕ
†ϕe−(κ/4) ∫x ∇
·∇
e

−(κ/4) ∫x

∣

∣

∣�aT− �Av
∣

∣

∣

2

, (B.7)
and hence the 
-dependent part when integrated becomes
∫




e−(κ/4) ∫x ∇
·∇
ei(κ/2)
∫

x 
∇×(�aT− �Av )

= e
−(κ/4) ∫x

∣

∣

∣�aT− �Av
∣

∣

∣

2 ∫




e−(κ/4) ∫x ∇
·∇
. (B.8)

The integral in the first term on the RHS is straightforward to
evaluate and is obtained as

κ

∫

x

∣

∣

∣�aT − �Av
∣

∣

∣

2

= κ

∫

x
|�aT|2 − 2e

∑

a


T(xa)− 2m
∑

a>b

ln |xa − xb|, (B.9)

up to a (infinite) constant from a = b terms. Now using the
expressions (B.7), (B.8) and (B.9) in equation (B.5), we get

ψN ({xa, σa}) = C[�a, ϕ]
N

∏

a=1

ϕσa (xa)e
e
T(xa )−i e
L(xa)

×
N,N
∏

a>b

(za − zb)
m, (B.10)

where (za − zb) = |xa − xb| exp(iθ(xa − xb)). The factor
C[a, ϕ] contains terms that are independent of the coordinates
{xa, σa}:

C[�a, ϕ] = c0ei(κ/2)
∫

x �aT×�aL e−(κ/2) ∫x |�aT|2e−(1/2) ∫x ϕ
†ϕ, (B.11)

where c0 is a constant, and the phase can be made to vanish by
a gauge choice. The expression (B.10) is then finally rewritten
as given in equation (3.3).
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Appendix C. Projection operator and vertex
operators

Using equations (B.1) and (2.13) we get

〈a, ϕ|P|a, ϕ〉 = 1

VG
e− ∫

x ϕ
†ϕ

∫




e−(κ/4) ∫x (∇
)2

× eiκ
∫

x 
∇×�ae
∫

x ϕ
†ϕ exp(−i e
). (C.1)

If κ
∫

x ∇ × �a = eN then the above expression, upon Taylor
expanding the last exponential term, reduces to the following
correlation function of vertex operators:

〈a, ϕ|P|a, ϕ〉 = 1

VG
e− ∫

x ϕ
†ϕ 1

N !
N

∏

i=1

∫

xi

ϕ†(xi)ϕ(xi)

×
∫




e−(κ/4) ∫x (∇
)2eiκ
∫

x 
∇×�a
N

∏

i=1

e−i e
(xi ). (C.2)

Appendix D. Gauge-invariant measure

The Jacobian of the transformation, ϕ → W = ϕ exp(e(
T −
˜
T−i
L)), is J [
T] = exp(−4 e(
T−˜
T−i
L)). Therefore
the integral
∫


T,
L

J [
T]|C|2 =
∫


T

∏

x

e−4 e
T(x)e−κ ∫

x (∇
T)
2

× e− ∫

x W † We−2 e(
T−˜
T )
. (D.1)

We now do the
T integration about the saddle-point which, to
O(A2

ε), is given by


T(x) = ˜
T(x)+ 1

2e
ln W †(x)W (x)− 1

2e
ln

2

Aε

+ Aεκ

4e2
∇2
T(x), (D.2)

where Aε is the area of the unit cell of the lattice used for
regularizing the measure. The last term in the above equation
can be neglected if 2e ln W †W � Aεκ∇2 ln W †W . This
condition holds good, even without invoking the hydrodynamic
limit, when Aε → 0. Now neglecting the non-Gaussian
fluctuations, we get
∫


T,
L

J [
T]|C|2

= c1 exp

(

−
∫

x
ρ + 2πm

∫

x
ρ∇−2ρ

)

∏

x

(

W †(x)W (x)
)−2

.

(D.3)

Note that the factor in the exponential is the action Scl(ρcl) at
the saddle-point.
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